skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "York, Robert_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundPrescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records. This study investigates the spatiotemporal patterns of escaped prescribed fires in California from 1991 to 2020, offering insights for resource managers in developing effective forest management and fuel treatment strategies. ResultsThe results reveal that the months close to the beginning and end of the wildfire season, namely May, June, September, and November, have the highest frequency of escaped fires. Under similar environmental conditions, areas with more records of prescribed fire implementation tend to experience fewer escapes. The findings revealed the vegetation types most susceptible to escaped prescribed fires. Areas with tree cover ranging from 20 to 60% exhibited the highest incidence of escapes compared to shrubs and grasslands. Among all the environmental conditions analyzed, wind speed stands out as the predominant factor that affects the risk of prescribed fire escaping. ConclusionsThese findings mark an initial step in identifying high-risk areas and periods for prescribed fire escapes. Understanding these patterns and the challenges of quantifying escape rates can inform more effective landscape management practices. 
    more » « less